Ava Amini

Formerly Ava Soleimany 1 Memorial Drive, Cambridge, MA 02142 avaamini.com ava.amini@microsoft.com

EDUCATION

Harvard University

Cambridge, MA

Doctor of Philosophy (PhD); Biophysics

2016 - 2021

Massachusetts Institute of Technology (MIT)

Cambridge, MA

Bachelor of Science (SB); Computer Science and Molecular Biology; GPA 5.0/5.0

2012 - 2016

EXPERIENCE

Microsoft Research

Cambridge, MA

Senior Researcher

Graduate Student

June 2021 - present

Research at the interface of machine learning and biophysics.

Laboratory for Multiscale Regenerative Technologies (LMRT)

Koch Institute, MIT Jan. 2017 - May 2021

Thesis research on engineering novel technologies for disease diagnosis and monitoring. Advisor: Sangeeta N. Bhatia.

MIT 6.S191: Introduction to Deep Learning

EECS, MIT

Lead Organizer and Lecturer

2018 - present

Developed entire course curriculum, taught lectures, managed sponsorships from industrial partners, published the content online, and organized all course operations.

Synthetic Biology Group

Research Laboratory of Electronics, MIT

 $Under graduate\ Researcher$

Sep. 2013 - June 2016

Synthetic recombinase-based state machines in living cells. Advisor: Timothy K. Lu.

Seven Bridges Genomics

Cambridge, MA

Research Intern

June 2015 - Sep. 2015

Development of the Seven Bridge Cancer Genomics Cloud and extensions to the Seven Bridges API. Advisor: Brandi Davis-Dusenbery.

Wang Genomics Lab

Keck School of Medicine, USC

 $Under graduate\ Researcher$

May 2013 - Sep. 2013

Single cell transcriptomics. Advisor: Kai Wang.

ALEKS Corporation

Irvine, CA

Research Intern

June 2011 - Aug. 2012

Creation of example problems for a new Pre-Algebra textbook written as a supplement to the ALEKS learning software. Advisor: Jean-Claude Falmagne.

Chubb-Wright Lab

University of California, Irvine

Research Intern

Feb 2011 - Aug. 2011

Psychophysical representation of visual texture recognition. Advisor: Charlie Chubb.

Publications

Formerly Ava P. Soleimany. *Equal contribution. †Corresponding authors.

- 1. Greenman, K.P., Amini, A.P., Yang, K.K. Benchmarking uncertainty quantification for protein engineering. bioRxiv (preprint, under review), 2023. [link]
- 2. Aung, A., Cui, A., Maiorino, L., Amini, A.P., Gregory, J.R., Bukenya, M., Zhang, Y., Lee, H., Cottrell, C.A., Morgan, D.M., Silva, M., Suh, H., Kirkpatrick, J.D., Amlashi, P., Remba, T., Froehle, L.M., Xiao, S., Abraham, W., Adams, J., Love, J.C., Huyett, P., Kwon, D.S., Hacohen, N., Schief, W.R., Bhatia, S.N., Irvine, D.J., Low protease activity in B cell follicles promotes retention of intact antigens after immunization. *Science*, 2023. [link]
- 3. Martin Alonso, C.*, Tabrizi, S.*, Xiong, K., Blewett, T., Patel, S., An, Z., Sridhar, S., Bekdemir, A., Shea, D., Amini, A.P., Wang, S.T., Kirkpatrick, J.D., Rhoades, J., Golub, T.R., Love, J.C., Adalsteinsson, V.A., Bhatia, S.N. A nanoparticle priming agent reduces cellular uptake of cell-free DNA and enhances the sensitivity of liquid biopsies. bioRxiv, 2023. [link]
- 4. Amini, A.P.*, Kirkpatrick, J.D.*, Wang, C.S., Jaeger, A.M., Su, S., Naranjo, S., Zhong, Q., Cabana, C.M., Jacks, T., Bhatia, S.N., Multiscale profiling of protease activity in cancer. *Nature Communications*, 2022. [link]

- 5. Wu, K.E., Yang, K.K., van den Berg, R., Zou, J.Y., Lu, A.X., <u>Amini, A.P.</u>[†] Protein structure generation via folding diffusion. arXiv (preprint, under review), 2022. [link]
- 6. Li, F.Z., Amini, A.P., Yang, K.K., Lu, A.X. Pretrained protein language model transfer learning: is the final layer representation what we want?. NeurIPS Workshop on Machine Learning in Structural Biology, 2022. [link]
- 7. Wang, A., Amini, A.P., Lu, A.X., Yang, K.K. Learning from physics-based features improves protein property prediction. NeurIPS Workshop on Machine Learning in Structural Biology, 2022. [link]
- 8. Rios-Martinez, C., Bhattacharya, N., Amini, A.P., Crawford, L., Yang, K.K. Deep self-supervised learning for biosynthetic gene cluster detection and product classification. bioRxiv (preprint, under review), 2022. [link]
- 9. Soleimany, A.P.*†, Martin-Alonso, C.*, Anahtar, M.*, Wang, C.S., Bhatia, S.N.†, Protease activity analysis: a toolkit for analyzing enzyme activity data. ACS Omega, 2022. [link]
- 10. Anahtar, M., Chan, L.W., Ko, H., Rao, A., **Soleimany, A.P.**, Khatri, P., Bhatia, S.N., Host protease activity classifies pneumonia etiology. *Proceedings of the National Academy of Sciences*, 2022. [link]
- 11. Kirkpatrick, J.D., Soleimany, A.P., Dudani, J.S., Liu, H., Lam, H.C., Priolo, C., Henske, E.P.[†], Bhatia, S.N.[†], Protease activity sensors enable real-time treatment response monitoring in lymphangioleiomyomatosis. *European Respiratory Journal*, 2022. [link]
- 12. Greenman, K.P., Soleimany, A.P., Yang, K.K., Benchmarking uncertainty quantification for protein engineering. *ICLR Workshop on Machine Learning for Drug Discovery*, 2022. [link]
- 13. Bekdemir, A., Tanner, E.E.L., Kirkpatrick, J., Soleimany, A.P., Mitragotri, S., Bhatia, S.N., Ionic liquid-mediated transdermal delivery of thrombosis-detecting nanosensors. *Advanced Healthcare Materials*, 2022. [link]
- 14. Aung, A., Cui, A., Soleimany, A.P., Bukenya, M., Lee, H., Cottrell, C.A., Silva, M., Kirkpatrick, J.D., Amlashi, P., Remba, T., Xiao, S., Froehle, L.M., Abraham, W., Suh, H., Huyett, P., Kwon, D.S., Hacohen, N., Schief, W.R., Bhatia, S.N., Irvine, D.J., Spatially regulated protease activity in lymph nodes renders B cell follicles a sanctuary for retention of intact antigens. *bioRxiv*, 2021. [link]
- 15. Soleimany, A.P.*, Kirkpatrick, J.D.*, Wang, C.S., Jaeger, A.M., Su, S., Naranjo, S., Zhong, Q., Cabana, C.M., Jacks, T., Bhatia, S.N., Multiscale profiling of enzyme activity in cancer. bioRxiv, 2021. [link]
- 16. He, J.*, Nissim, L.*, **Soleimany, A.P.***, Binder-Nissim, A., Fleming, H.E., Lu, T.K., Bhatia, S.N., Synthetic circuit-driven expression of heterologous enzymes for disease detection. *ACS Synthetic Biology*, 2021. [link]
- 17. Soleimany, A.P.*, Amini, A.*, Goldman, S.*, Rus, D., Bhatia, S.N., Coley, C.W., Evidential deep learning for guided molecular property prediction and discovery. ACS Central Science, 2021. [link]
- 18. Soleimany, A.P.*, Kirkpatrick, J.D.*, Su, S., Dudani, J.S., Zhong, Q., Bekdemir, A., Bhatia, S.N., Activatable zymography probes enable in situ localization of protease dysregulation in cancer. *Cancer Research*, 2021. [link]
- 19. **Soleimany, A.P.***, Amini, A.*, Goldman, S.*, Rus, D., Bhatia, S.N., Coley, C.W., Evidential deep learning for guided molecular property prediction and discovery. *Machine Learning for Molecules, NeurIPS*, 2020. [link]
- 20. Amini, A., Schwarting, W., **Soleimany**, A., and Rus, D., Deep evidential regression. *Advances in Neural Information Processing Systems*, 2020. [link]
- 21. Mehta, N.K., Pradhan, R.V., Soleimany, A.P., Moynihan, K.D., Rothschilds, A.M., Momin, N., Rakhra, K., Mata-Fink, J., Bhatia, S.N., Wittrup, K.D., Irvine, D.J., Pharmacokinetic tuning of protein–antigen fusions enhances the immunogenicity of T-cell vaccines. *Nature Biomedical Engineering*, 2020. [link]
- 22. **Soleimany, A.P.**, Bhatia, S.N., Activity-based diagnostics: an emerging paradigm for disease detection and monitoring. *Trends in Molecular Medicine*, 2020. [link]
- 23. Kirkpatrick, J.D.*, Warren, A.D.*, Soleimany, A.P.*, Westcott, P.M.K., Voog, J.C., Martin-Alonso, C., Fleming, H.E., Tammela, T., Jacks, T., Bhatia, S.N., Urinary detection of lung cancer in mice via noninvasive pulmonary protease profiling. *Science Translational Medicine*, 2020. [link]
- 24. Schuerle, S., Furubayashi, M., Soleimany, A.P., Gwisai, T., Huang, W., Voigt, C.A., Bhatia, S.N., Genetic encoding of targeted MRI contrast agents for tumor imaging. *ACS Synthetic Biology*, 2020. [link]
- 25. Loynachan, C.N.*, Soleimany, A.P.*, Dudani, J.S., Lin, Y., Najer, A., Bekdemir, A., Chen, Q., Bhatia, S.N.[†], Stevens, M.M.[†], Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. *Nature Nanotechnology*, 2019. [link]

- 26. Soleimany, A.P., Suresh, H., Gonalez Ortiz, J. J., Shanmugam, D., Gural, N., Guttag, J., Bhatia, S.N., Image segmentation of liver stage malaria infection with spatial uncertainty sampling. International Conference on Machine Learning Workshop on Computational Biology; arXiv, 2019. [link]
- 27. Amini, A.*, Soleimany, A.P.*, Schwarting, W., Bhatia, S.N., Rus, D., Uncovering and mitigating algorithmic bias through learned latent structure. AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society, 2019. [link]
- 28. Schuerle, S., Soleimany, A.P., Yeh, T., Anand, G.M., Haberli, M., Fleming, H.E., Mirkhani, N., Qiu, S., Hauert, S., Wang, X., Nelson, B.J., Bhatia, S.N., Synthetic and living micropropellers for convection-enhanced nanoparticle transport. Science Advances, 2019. [link]
- 29. Chen, Y., Millstein, J., Liu, Y., Chen, G.Y., Chen, X., Stucky, A., Qu, C., Fan, J., Chang, X., Soleimany, A., Wang, K., Zhong, J., Liu, J., Gilliland, F.D., Li, Z., Zhang, X., Zhong, J.F., Single-cell digital lysates generated by phase-switch microfluidic device reveal transcriptome perturbation of cell cycle. ACS Nano, 2018. [link]
- 30. Amini, A., Soleimany, A., Karaman, S., Rus, D., Spatial uncertainty sampling for end-to-end control. Neural Information Processing Systems Workshop on Bayesian Deep Learning, 2017. [link]
- 31. Roquet, N., Soleimany, A.P., Ferris, A.C., Aaronson, S., Lu, T.K., Synthetic recombinase-based state machines in living cells. Science, 2016. [link]

Teaching

Lead organizer and lecturer

MIT

Introduction to Deep Learning, 6.S191

2018 - present

Developed, organized, and taught MIT's official introductory course on deep learning methods and applications. 2021 MIT enrollment of 700 students; MIT enrollment of 300+ students per year in each of 2018, 2019, and 2020; over 30,000 registered students globally; over 6 million online lecture views.

Teaching fellow

Harvard University

Questions in Physical Biology, MCB 294

Fall 2019

Seminar course on topics in biophysics, systems biology, physical biology, and bioengineering.

Teaching assistant

MIT

General Biochemistry, 7.05

Spring 2015, Spring 2016

Lectured on course material in a weekly recitation section of approximately 25 students. Led review sessions to all students in the course, wrote problem sets, and facilitated and graded exams. Course taught by Matthew Vander Heiden, M.D., Ph.D. and Michael Yaffe, M.D., Ph.D.

Visiting teacher Rome, Italy

Liceo Scientifico Nomentano

Jan. 2014

Full time teacher; taught physics, chemistry, and English to Italian high school students.

Tutor

MIT

Biology & Chemistry departments

Sep. 2013 - June 2016

RESEARCH MENTORSHIP AND ADVISING

Taylor Killian Microsoft Research PhD research intern, University of Toronto Computer Science June 2022 - September 2022 Microsoft Research With L. Crawford. PhD research intern, University of Washington Bioengineering June 2022 - September 2022

Megan Richards

Microsoft Research

Undergraduate research intern. Duke Electrical and Computer Engineering

June 2022 - September 2022

Kevin Wu

Francesca-Zhoufan Li

Microsoft Research

Microsoft Research

Microsoft Research

With K. Yang and A. Lu. PhD research intern, Stanford Computer Science

June 2022 - September 2022

With K. Yang and A. Lu. PhD research intern, Caltech Bioengineering

 $June\ 2022-September\ 2022$

Amy Wang

Microsoft Research

With K. Yang and A. Lu. PhD research intern, Stanford Chemical Engineering

June 2022 - September 2022

Kevin Greenman

With K. Yang. PhD research intern, MIT Chemical Engineering

January 2021

Cathy Wang

MIT

PhD student, MIT Biological Engineering

June 2021 - August 2022

Carolina Rios-Martinez	Microsoft Research
• With K. Yang and L. Crawford. Undergraduate research intern, UC Berkeley Bioengineering	July 2021 – Sep. 2021
Carmen Martin Alonso	MIT
PhD student, MIT Health Sciences & Technology Susan Su	Jan. 2019 – June 2021 MIT
Undergraduate student, MIT Mechanical Engineering	Sep. 2019 - May 2021
Ahmet Bekdemir	MIT
Postdoctoral associate, MIT Koch Institute Neha Kapate	June 2018 – Dec. 2018 MIT
PhD rotation student, MIT Health Science & Technology	Sep. 2018 - Dec. 2018
Invited Talks and Presentations	
TEDx MIT Invited talk	Cambridge, MA 2023
ICLR Workshop on Physics for Machine Learning	Kigali, Rwanda
• Keynote talk	2023
Boston University Center for Computing & Data Sciences Invited talk	Boston, MA 2023
Marble Center for Cancer Nanomedicine	MIT
Keynote talk	2023
MILA AI Helps Ukraine Conference **Keynote talk**	MILA, Montreal 2022
PRISME Technical Forum	Carlsbad, CA
Invited talk Microsoft Research Summit	2022 Microsoft
Invited talk	2022
Molecular Modeling and Drug Discovery Seminar Keynote talk	MILA (virtual) 2022
ICML Adaptive Experimental Design and Active Learning in the Real World $Keynote\ talk$	(ReALML) Baltimore, MD 2022
	Redmond, WA 2022
	Manchester, NH 2022
Flagship Pioneering AI Talks *Invited talk*	Cambridge, MA 2022
Broad Institute of MIT and Harvard Special seminar	Cambridge, MA 2022
MIT Department of Electrical Engineering and Computer Science Special seminar	Cambridge, MA 2022
Harvard University Department of Biomedical Informatics Special seminar	Harvard University 2022
$ \begin{array}{l} \textbf{Healthy ML Group Seminar} \\ Invited \ talk \end{array} $	MIT 2022
Dana Farber Cancer Institute Department of Data Science Special seminar	Dana Farber Cancer Institute 2022
Amgen Science Council Invited talk	Amgen (virtual) 2022
UC Berkeley and UCSF Program in Computational Precision Health Special seminar	UC Berkeley, UCSF 2022
University of Pennsylvania Department of Bioengineering Special seminar	Philadelphia, PA 2022
Columbia University Department of Biomedical Engineering Special seminar	Columbia University 2022

• IBM Research Zurich • Invited talk	IBM (virtual) 2021
$ullet$ Microsoft Research Summit $Invited \ talk$	Microsoft 2021
Koch Institute Focus Seminar Invited talk	MIT 2021
Ludwig Center for Molecular Oncology Retreat	MIT
Invited talk Basil Hetzel Institute for Translational Health Research Invited talk	2021 Adelaide, Australia (virtual) 2021
Virtual Seminar in Biomedical Science Invited talk	MIT 2021
Koch Institute Image Awards Invited talk	MIT 2021
Marble Center for Cancer Nanomedicine Invited talk	MIT 2021
Microsoft Research New England Invited talk	Microsoft Research
NeurIPS Machine Learning for Molecules Workshop Contributed talk	NeurIPS Conference 2020
NeurIPS Machine Learning for Molecules Workshop $_{Poster}$	NeurIPS Conference 2020
NeurIPS Bayesian Deep Learning Workshop $Poster$	NeurIPS Conference 2020
NeurIPS Women in Machine Learning Poster	NeurIPS Conference 2020
Embodied Intelligence Seminar Contributed talk	MIT 2020
Biophysics Program Retreat Invited talk	Harvard University 2020
Broad Institute Chemical Biology Meeting Invited talk	Cambridge, MA 2020
Harvard Biophysics Student Seminar Invited talk	Cambridge, MA 2019
	Falmouth, MA 2019
Early Detection of Cancer Conference Poster	Stanford, CA 2019
• ICML Workshop on Computational Biology • Poster	Long Beach, CA 2019
$ \begin{array}{c} \textbf{Broad Institute Blood Biopsy Meeting} \\ Invited \ talk \end{array} $	Cambridge, MA 2019
Ludwig Center for Molecular Oncology Retreat Poster	Dedham, MA 2019
Biomedical Engineering Society Annual Meeting **Contributed talk*	Atlanta, GA 2018
Ludwig Center for Molecular Oncology Retreat Invited talk	Dedham, MA 2019
Gordon Research Conference, Proteolytic Enzymes and Their Inhibitors **Contributed talk**	Barga, Italy 2018
Marble Center for Cancer Nanomedicine Invited talk	Cambridge, MA 2018
Biomedical Engineering Society Annual Meeting * Contributed talk	Phoenix, AZ 2017

TEDx Speaker TEDx MIT

2023

Koch Institute Image Awards

MIT

2021 winning image

National Science Foundation (NSF) Graduate Research Fellowship

Harvard University

Graduate Fellow, 2017 - 2021

Henry Ford II Scholar Award

MIT

2016 recipient

To a senior engineering student who has maintained a cumulative average of 5.0 at the end of his/her seventh term and has exceptional potential for leadership.

AMITA Senior Academic Award

MIT

2016 recipient

To an outstanding senior woman who has demonstrated the highest level of academic excellence through her coursework and related professional activities at MIT.

Vikki Auzenne Memorial Women's Tennis Leadership Award

MIT

2016 recipient

To a member of the MIT varsity women's tennis team who best exemplifies the qualities of leadership through mentoring, advising, and counseling others, both on and off the court.

SuperUROP Outstanding Research Project Award

MIT

2015 recipient

MIT-EECS Wertheimer Undergraduate Research and Innovation Scholar

MIT

2014 recipient

Leadership

Momentum AI Cambridge, MA Co-founder

2021 - present

Co-founded and directed an outreach program that teaches AI to under-resourced and under-served high school students from the Boston area. Two week capstone program is a free, project-based deep-dive into AI on MIT's campus.

MIT Varsity Women's Tennis

MIT

Captain 2014 - 2016

2012 - 2016

MIT Leadership Training Institute

MIT

Managing Director 2014 - 2016

2012 - 2016

Directed a service-focused leadership program for underserved high school students from the Boston area.

MIT Freshman Leadership Program

MIT

Counselor

2014 - 2016

Developed and counseled in annual pre-orientation program for MIT freshmen centered on personal empowerment, social justice, inclusivity and diversity, and leadership skill-building.

SKILLS

- Computational skills: Python; Java; MATLAB; Unix/BASH; R; TensorFlow; PyTorch; machine learning; deep learning; data analysis; bioinformatics
- Wet laboratory skills: techniques in bioengineering, biochemistry, cancer biology, including: small animal pre-clinical models; chemical probe design; nanoparticle engineering; biochemical and proteomic assays; mammalian and bacterial cell culture; molecular biology assays; flow cytometry and FACS; RNA-seq and single-cell RNA-seq
- Languages: English (native), Farsi (fluent)

Last updated: April 25, 2023